MUE192
Mechanical Integrity & Reliability in Refineries, Petrochemical & Process Plants
Course Introduction:

This course will provide a comprehensive review of the various aspects of engineered safety and mechanical integrity in refineries, oil and gas plants and petrochemical plants.

Principal emphasis is placed on the primary means of achieving plant integrity, which is the prevention of pressure equipment and piping failures, particularly, any which could cause significant consequences.

This course builds on a focused and practical coverage of engineering materials properties and selection and provides structured procedures and applicable calculation formulae and methods for the mechanical design of process piping systems and pressure equipment.

The course underscores the importance of interactions and cooperation between the three key functions of engineering, operation and maintenance in achieving the optimum mechanical reliability level in the plant. It enforces this key issue with practical examples of significant failures resulting from lack of understanding of the roles, responsibilities and interfaces between these functions.

Course Objectives:

Upon successful completion of this course, the delegates will be able to:

- Understand and apply the various aspects of engineered safety to ensure mechanical integrity in a responsible and cost effective manner
- Gain enhanced knowledge and skills in hazard identification and analysis and in risk assessment and management
- Learn practical and effective methods and tools to perform practical likelihood and consequence analyses
- Achieve measurable improvement in mechanical integrity through effective interaction between engineering, operation and maintenance functions
- Gain a sound working knowledge of the interdependence of design, operation, and maintenance on integrity, reliability and cost effectiveness of piping systems
- Add to their ability and skills in piping failure detection and analysis, estimating failure consequences, and fitness for service assessment
- Enhance their competence and productivity thereby enhancing their competence and performance level and making additional value added contributions to their organizations
Who Should Attend?

This course is particularly valuable for refinery and petrochemical plant technical professionals, engineers, inspectors, maintenance personnel, as well as for project and consulting engineers and engineering and technical personnel involved in plant mechanical integrity and reliability.

Course Outline:

Day 1:
Technical Integrity, Industrial Failures and Safety in Design

Technical Integrity (An Overview)
- Definition, scope, and key elements hardware and software issues, people ware sound people management
- Potential threats to technical integrity in a hazardous environment
- Regulatory requirements
- Life cycle implications design/operation/maintenance, regulatory/industrial interface, training/staff development, networking

Industrial Failures Catastrophic Failures Do Happen
- Statistics
- Typical examples
- Causes and implications
- Learnings
- Estimation of Consequences of Pressure and Storage Equipment Failures vessels, exchangers, heaters, storage tanks, and piping
- Types of Hazards: release of hazardous substances, bleves, fractures, explosions, vapor cloud explosions
- Guidelines and Procedures for quantifying consequences

Safety in Design I
- Project development and design bases
- Appropriate Codes, Standards, Specifications, Industrial Practices
- Safeguarding premises
- Calculation methods, heuristic

Safety in Design II
- Quality Control in Design
- Inherent Safety
- Reliability and availability premises
Integration of operability and maintainability in design
- Health, Safety and Environmental Considerations
- Roles and responsibilities of Engineering/Operation/Maintenance
- Operating Strategies Run Length, shifts
- Startup, Shutdown, Emergency Operating Procedures
- Steam-out and Flushing procedures
- Isolation, blanking, vents and drains
- Human factor: training modules, operator training

Workshop 1: Failure Consequences Case studies and worked examples

Day 2:
Material Selection and Design of Major Equipment and Piping Systems
Design Codes, Standards, Specifications, and Best Practices
- Fit for purpose facilities
- Business focused facilities
- Liability and due diligence

Engineering Materials I
- Types and application
- Imperfections and defects
- Specifications and standards

Engineering Materials II
- Behavior of Metals Under Stress
- Degradation processes
- Selection methodology and guidelines

Design of Major Plant Equipment Methodology and key considerations
- Pressure Vessels
- Heat Exchangers
- Fired heaters and boilers

Design of Piping Systems I Pressure Integrity
- Methodology and key considerations

Design of Piping Systems II Mechanical Integrity
- Special design considerations dynamic and transients loadings
- Piping flexibility and supports

Day 3:
Failures and Failure Prevention
Safeguarding Systems I Guidelines and Best Practices
- Principles
- Guidelines and Best Practices
- Documentation
- Safeguarding systems integrity design

Safeguarding Systems II Safety Systems Key Design Considerations
- Safeguarding safety systems SIL
- Relief and de-pressuring systems
- Safeguarding systems integrity and effectiveness

Failures in Piping and equipment Pressure Vessels, Piping and Boilers
- Degradation processes
- Failures in pressure equipment
- Piping System Vibration and Failure

Failures in Rotating Equipment
- Causes
- Monitoring and analysis
- Reliability improvement

Failure Prevention
- Causal analysis

Testing and Monitoring
- Inspection, Testing and Repair Regulations, Codes, and Practices
- Evaluation of Inspection Data

Failures due to Improper Operation and Maintenance

Day 4:

Hazard and Risk Identification, Assessment and Management

Hazard Identification and Assessment
- Probability basics
- Probabilistic risk assessment concepts and methodology
- Fault tree and event tree analysis
- Quantitative risk assessment concepts and methodology

Integrated Safety Management Plan
- Hazard and Effect Management Plan
• Bow Tie process
• Risk Matrix
• Determining acceptability of risk

Hazard and Operability Reviews
• Process and guidelines

Management of Change
• Change Control Policy and Procedures
• Process Changes
• Plant Changes
• Assessment and Authorization
• Documentation
• Illustrative Change Control Procedure

Day 5:
Operation and Maintenance Aspects of Plant Integrity

Fitness for Service / Engineering Critical Assessments
• Fracture Mechanics and Mode of Failure of Material
• Flaw Characterization, Growth, Stability
• Factors of Safety
• Disposition versus Repair

Maintenance Strategies and Programs
• Risk based Inspection
• Reliability centered maintenance

Rerating Piping and Pressure Vessels

Troubleshooting Plant equipment and Piping systems
• Guidelines and best practices
• Resonance and Vibration
• Excessive Thrusts and Moments on Connected Equipment
• Leakage at Joints
• Excessive Piping Sag, Disengagement of Piping from Supports
• Interference with Expansion and Contraction

Technical Integrity Audits
• Guidelines and procedures
• Checklists
• Implementation plans
Course Requirement:

“Hand’s on practical sessions, equipment and software will be applied during the course if required and as per the client’s request”.

Course Certificate:

International Center for Training & Development (ICTD) will award an internationally recognized certificate(s) for each delegate on completion of training.

Course Methodology:

A variety of methodologies will be used during the course that includes:

- (30%) Based on Case Studies
- (30%) Techniques
- (30%) Role Play
- (10%) Concepts
- Pre-test and Post-test
- Variety of Learning Methods
- Lectures
- Case Studies and Self Questionnaires
- Group Work
- Discussion
- Presentation

Course Fees:

To be advised as per the course location. This rate includes participant’s manual, and-Outs, buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Timings:

Daily Course Timings:

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 08:20</td>
<td>Morning Coffee / Tea</td>
</tr>
<tr>
<td>08:20 - 10:00</td>
<td>First Session</td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td>Coffee / Tea / Snacks</td>
</tr>
<tr>
<td>10:20 - 12:20</td>
<td>Second Session</td>
</tr>
</tbody>
</table>
12:20 - 13:30 Lunch Break & Prayer Break
13:30 - 15:00 Last Session